Мультиагентное обучение с подкреплением. Учебное пособие








Рассмотрены современные и классические алгоритмы одновременного машинного обучения множества агентов, основанные на теории игр, табличных, нейросетевых, эволюционных и роевых технологиях. Представлено последовательное развитие теоретической модели алгоритмов, базирующееся на марковских процессах принятия решений. Реализация алгоритмов выполнена на языке программирования Python с использованием библиотеки глубокого обучения PyTorch. Средой машинного обучения является компьютерная игра StarCraft II с интерфейсом кооперативного мультиагентного обучения SMAC. Для магистрантов и аспирантов направления подготовки «Информатика и вычислительная техника».
Перейти к описанию и характеристикам| Издательство | МГТУ им. Н.Э. Баумана |
| Год издания | 2022 |
| ISBN | 978-5-7038-5851-6 |
| Вес, г | 519 |
Рассмотрены современные и классические алгоритмы одновременного машинного обучения множества агентов, основанные на теории игр, табличных, нейросетевых, эволюционных и роевых технологиях. Представлено последовательное развитие теоретической модели алгоритмов, базирующееся на марковских процессах принятия решений. Реализация алгоритмов выполнена на языке программирования Python с использованием библиотеки глубокого обучения PyTorch. Средой машинного обучения является компьютерная игра StarCraft II с интерфейсом кооперативного мультиагентного обучения SMAC. Для магистрантов и аспирантов направления подготовки «Информатика и вычислительная техника».
| Издательство | МГТУ им. Н.Э. Баумана |
| Год издания | 2022 |
| ISBN | 978-5-7038-5851-6 |
| Вес, г | 519 |