Устойчивость и локализация в хаотической динамике



Эргодическая теория динамических систем - область математики, интенсивно развивающаяся в последние десятилетия и находящая многочисленные приложения в различных разделах физики, техники, биологии и других наук. В монографии дается систематическое изложение операторного подхода в теории хаотических динамических систем, основанного на анализе спектральных свойств оператора Перрона-Фробениуса, описывающего динамику плотностей мер под действием динамической системы. Одним из центральных вопросов здесь является вопрос об устойчивости относительно малых случайных (квазислучайных) возмущений статистических характеристик динамики. Противоположной ситуацией, связанной с крайней неустойчивостью динамической системы, является явление локализации, которое в монографии прослеживается для самых разных характеристик, начиная со стабилизации сингулярных инвариантных мер и кончая спектральной локализацией. Подробно изучены также вопросы численного моделирования хаотической динамики, в частности, аппроксимация динамики при помощи конечных марковских цепей по методу Улама. Для студентов, аспирантов и научных работников в области математики и математической физики.
Перейти к описанию и характеристикамИздательство | МЦНМО |
Серия | Новые математические дисциплины |
Год издания | 2020 |
ISBN | 978-5-900916-67-5 |
Вес, г | 489 |
Эргодическая теория динамических систем - область математики, интенсивно развивающаяся в последние десятилетия и находящая многочисленные приложения в различных разделах физики, техники, биологии и других наук. В монографии дается систематическое изложение операторного подхода в теории хаотических динамических систем, основанного на анализе спектральных свойств оператора Перрона-Фробениуса, описывающего динамику плотностей мер под действием динамической системы. Одним из центральных вопросов зде ...
Издательство | МЦНМО |
Серия | Новые математические дисциплины |
Год издания | 2020 |
ISBN | 978-5-900916-67-5 |
Вес, г | 489 |